Transit of normal rat uterine stromal cells through G1 phase of the cell cycle requires progesterone-growth factor interactions.
نویسندگان
چکیده
Understanding of cell cycle regulation in hormonally responsive cells lags behind studies in other systems because few models have been available to identify the role of steroid hormones and their receptors in this process. This study investigates progesterone-dependent effects on the progression of normal uterine stromal cells through early G1 phase of the cell cycle. Quiescent rat uterine stromal cells were stimulated to reenter the cell cycle by adding serum-free medium containing medroxyprogesterone acetate (MPA) and basic fibroblast growth factor (FGF). [3H]thymidine incorporation increased significantly (P = 0.025) in cells stimulated with both FGF alone and MPA plus FGF compared with the control cells. Moreover, cells stimulated with MPA plus FGF incorporated significantly more (P = 0.01) [3H]thymidine than cells treated with FGF alone, suggesting requisite interactions between progesterone and FGF for stromal cell entry into S phase. Flow cytometric analysis of stimulated stromal cells showed FGF alone and MPA plus FGF increased significantly (P = 0.002) the percentage of cells in S phase at 12 h. Incorporation of bromodeoxyuridine into stromal cell nuclei indicated that FGF alone and MPA plus FGF increased the percentage of cells entering S phase at 18 and 24 h compared with the control cells. In addition, MPA plus FGF increased significantly (P = 0.001) the number of cells entering S phase at 24 h compared with FGF alone and sustained S phase entry compared with FGF alone, MPA alone, or the control cells. Stromal cells inhibited from G1 reentry by inhibition of mitosis showed accelerated entry into S phase in response to MPA plus FGF compared with FGF alone. Cyclin D1 messenger RNA increased in stromal cells treated with MPA plus FGF at 9, 12, and 15 h. Addition of RU 486 to cells stimulated with MPA plus FGF for 9 h reduced cyclin D1 messenger RNA accumulation by 40%. Western blot analysis of cyclin D1 immunoprecipitates indicated complex formation with both cyclin-dependent kinase 4 (Cdk4) and cyclin dependent kinase 6 (Cdk6). Cyclin D1-Cdk complexes and kinase activity correlated temporally with increased cyclin D1 expression in cells cultured with MPA plus FGF. Taken together, these results show that progesterone-FGF interactions increase cyclin D1 expression, correlating with accelerated stromal cell entry into S phase compared with cells treated with FGF alone. Moreover, progesterone plus FGF sustains the timing of stimulation for transit of uterine stromal cells through G1 into S phase compared with FGF alone.
منابع مشابه
WINGLESS (WNT) signaling is a progesterone target for rat uterine stromal cell proliferation
Preparation of mammalian uterus for embryo implantation requires a precise sequence of cell proliferation. In rodent uterus, estradiol stimulates proliferation of epithelial cells. Progesterone operates as a molecular switch and redirects proliferation to the stroma by down-regulating glycogen synthase kinase-3β (GSK-3β) and stimulating β-catenin accumulation in the periluminal stromal cells. I...
متن کاملProgesterone and the control of uterine cell proliferation and differentiation.
Progesterone is the only steroid hormone that is essential for the establishment and maintenance of pregnancy in all mammalian species that have been studied. Mice lacking the progesterone receptor (PR) by targeted mutagenesis exhibit abnormalities in all aspects of reproduction including sexual behavior, mammary gland development, ovulation, and implantation. Implantation in PR null mice fails...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملProgesterone initiates Wnt-beta-catenin signaling but estradiol is required for nuclear activation and synchronous proliferation of rat uterine stromal cells.
Progesterone pretreatment of ovariectomized rat uteri increases the number of synchronously proliferating stromal cells in response to estradiol 17-beta. To identify the signals involved in stimulating synchronous proliferation, sexually mature ovariectomized rats were injected with progesterone (2 mg) for 3 consecutive days. Estradiol 17-beta (0.2 microg) was administered to initiate cell cycl...
متن کاملComparison of the effects of progesterone and 17 β-estradiol on Schwann cell markers expression in rat adipose-derived stem cells
Steroids promote the myelination and regeneration in the peripheral nervous system. Whereas, little is known about the inducing effects by which the hormones exert their effects on Schwann cells differentiation. This could be revealed by the expression of Schwann cell markers in adipose-derived stem cells (ADSCs). The purpose of this study was to present the effects of progesterone and 17 β-est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 141 2 شماره
صفحات -
تاریخ انتشار 2000